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[0086] The commonest class of error-correcting codes are
linear error-correcting codes. Almost all of the error-correct-
ing codes presently used in practice are linear. It is conve-
nient, although not necessary, to choose the decoding func-
tion of a linear error-correcting code for use in embodiments
of the present invention. One property of linear error-
correcting codes that is useful in a number of applications is
that it is easy to select a codeword c uniformly at random
from the set of codewords C.

[0087] 1t should be noted, however, that an error-correct-
ing code traditionally involves changing a message m to a
codeword ¢ before transmission 30. In some situations,
however, the translation function g cannot be applied effec-
tively. For instance, when the message m itself contains
errors, generating redundancy is problematic. The errors in
the message m may well be propagated and reinforced by the
redundancy in the corresponding codeword c. This situation
exists in the case of a secret pattern that comprises a
sequence of discrete graphical choices. It may be difficult for
a user to make or repeat discrete graphical choices on a
graphical interface without errors; accordingly, a sequence
of values that corresponds to a secret pattern should be
considered a message m that includes errors. Thus, embodi-
ments of the present invention do not use error-correcting
codes in the traditional way.

[0088] Embodiments of the present invention use the
decoding function f of an error-correcting code to relate a
value, which corresponds to a discrete graphical choice, to
a codeword c. In some embodiments, the value is treated as
a corrupted codeword i in an error-correcting code. In such
embodiments, the decoding function f decodes the value into
a codeword c as if the value were a corrupted codeword i.

[0089] Embodiments of the invention do not make use of
the translation function g or the reverse translation function
g™! of the error-correcting code. In consequence, such
embodiments do not map a message m from the message
space 10 to a codeword ¢ from the set of codewords C in
codeword space 20. Nor do such embodiments map a
codeword ¢ from the set of codewords C in codeword space
20 back to a message m from the message space 10. In fact,

such embodiments do not use the message space 10 at all.

[0090] The enrollment process illustrated in FIG. 2
includes selecting a codeword ¢ for a value (STEP 230). The
value is an n-bit string that corresponds to a discrete graphi-
cal choice. The graphical choice may be any sort of discrete
input to a graphical interface, such as the selection of a
region, an area, or a point on the graphical interface. The
codeword c that is selected for a value is also an n-bit string.
In some embodiments, STEP 230 involves applying a
decoding function f of an error-correcting code to a value. In
one such embodiment, the decoding function f is part of a
linear error-correcting code.

[0091] Inone embodiment, the error-correcting code has a
dimension d in which codewords are of the form <Ra_l1,
Ra_2, ..., Ra_d> such that a_i is an integer and R is a
real-valued code parameter and the decoding function f as
applied to vector <x_1, x_2, . . ., x_d> simply rounds each
element x_i to the integer a_iR that is closest. In a related
embodiment, where there are ambiguities, a deterministic or
randomized tie-breaking algorithm is used, or both possi-
bilities are checked.

[0092] FIG. 9 illustrates a geometric analogy for selecting
a codeword ¢ for a value x (STEP 230), according to one
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embodiment of the present invention. The set of codewords
C are represented as the set of points ¢y, ¢,, c5, and ¢, on the
u-v plane; mathematically expressed as C={c,, ¢,, ¢5, ¢4}
The value x is represented as a point on the u-v plane in FIG.
9 with the coordinates (30, 595). The decoding function
associated with this example, but not shown, selects the
codeword ¢ within the set of codewords C that is nearest to
the input. In comparison, the decoding function f in its
normal use as part of an error-correcting code would select
the codeword c that is nearest to the corrupted codeword i.
Accordingly, since in this example the input to the decoding
function is the value x, the decoding function f selects
codeword c;, the codeword nearest to the value x. This
process is expressed mathematically as f(x)=c.

[0093] Note that FIG. 9 illustrates a geometric analogy of
an embodiment in which the decoding function f has no
minimum distance in contravention to the usual case. A
decoding function f that uses unconstrained codewords
selects the codeword ¢ nearest the value x without limit on
its distance between the value x and the nearest codeword c.
Such a decoding function f will not always be successful in
selecting a codeword ¢ for a value x because, for example,
a value x may be equidistant to more than one codeword.

[0094] FIG. 10 illustrates a geometric analogy of an
embodiment in which the decoding function f selects the
codeword c nearest to the value x provided that the distance
between the value x and the nearest codeword c falls within
the minimum distance of the error-correcting code. In such
an embodiment, a decoding function f that uses constrained
codewords is used in STEP 230. The dotted line circles
surrounding each of the codewords C {c,, ¢,, ¢, Cy
represent the boundaries of the neighborhood of values for
which the decoding function f will select the included
codeword c. The decoding function f will not select the
included codeword ¢ for any value outside the dotted line
circle that surrounds the codeword ¢, even if the value
outside the dotted line circle is closer to the enclosed
codeword ¢ than to any other codeword. For example, the
value x in FIG. 10 does not fall within the boundaries of an
area that will map to any codeword c. Accordingly, the
decoding function f may output ¢.

[0095] Ineither of the foregoing embodiments, the amount
of information about the value x that is contained in the
corresponding codeword ¢ depends on the number of code-
words, or the size of the set of codewords C. The larger the
set of codewords, the more information that a codeword
contains about its associated value x.

[0096] A comparison of FIG. 11A and FIG. 11B illus-
trates this concept through another geometric analogy. FIG.
11A shows a value x and a set of one codeword C={c}, both
as points on a plane. A decoding function f will select the
codeword c nearest to the value x in FIG. 11A. Since there
is a single codeword c in the set of codewords C in FIG.
11A, the decoding function f will select the codeword ¢ for
the value x. Accordingly, knowing that the decoding func-
tion selected codeword c for the value x in FIG. 11A
provides no information about the true location of the value
x on the plane. In comparison, FIG. 11B shows a value x and
a set of four codewords, all as points on a plane. A decoding
function f will select the nearest codeword ¢, for the value
x in FIG. 11B. Since there are four codewords in the set of
codewords C={c,, ¢,, cs, ¢4y in FIG. 11B and the value x is



